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ABSTRACT 

The major propulsion systems of t h e  space s h u t t l e  present ly  

contemplated by NASA are described. Their  c h a r a c t e r i s t i c s ,  funct ions,  

and s t a t u s  r e l a t i v e  t o  t h e  cu r ren t  technology are discussed. Selected 

examples a r e  given which a r e  r ep resen ta t ive  of t h e  problems t o  be solved 

i n  t h e  developmental e f f o r t  required fo r  t h e  s h u t t l e  t o  become a r e a l i t y .  

INTRODUCTION 

Students of L a t i n  know w e l l  t h a t  a l l  Gaul w a s  divided i n t o  t h r e e  

p a r t s .  Students of s h u t t l e  propulsion know t h a t  i t ,  too ,  has t h r e e  par t s :  

main propulsion, a u x i l i a r y  propulsion, and a i rb rea th ing  propulsion (Fig. 1). 

1. Main propuls ion cons i s t s  of new high pressure  rocket  engines f o r  

both t h e  booster and t h e  o r b i t e r  vehic les .  

manufacturing, and opera t iona l  cos t s ,  engines i n  t h e  booster and 

o r b i t e r  are t o  be e s s e n t i a l l y  the s a m e e  Since t h e  booster  needs 

much more t h r u s t  than t h e  o r b i t e r ,  t h e  booster w i l l  need seve ra l  

t i m e s  a s  many engines, 

engine-out f l i g h t  c a p a b i l i t y ,  it must have a t  l e a s t  two engines,  

Thus, t h e  main propuls ive systems fo r  both booster and o r b i t e r  

w i l l  comprise mul t ip le  engines,  c lus te red  fo r  concurrent operat ion,  

To save on development, 

Because t h e  o r b i t e r  i s  required t o  have 

These rocke t  engines w i l l  be used f o r  launch and f l i g h t  from ea r th  
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t o  o r b i t ,  The booster engines a lone  w i l l  be used f o r  launch, 

The o r b i t e r  engines w i l l  perform only i n  vacuum a f t e r  separa t ion  

of booster  and o r b i t e r  i n  space, 

2, Auxiliary propulsion comprises t h e  mult i tude of t h r u s t e r s  located 

throughout t h e  s h u t t l e  f o r  u se  i n  a t t i t u d e  cont ro l  and veh ic l e  

maneuvering i n  space, Unlike present  a t t i t u d e  cont ro l  i! irusters 

which a r e  q u i t e  s m a l l ,  t he se  s h u t t l e  engines w i l l  each provide 

hundreds or thousands of pounds of t h r u s t ,  

3 ,  Airbreathing propulsion cons i s t s  of j e t  engines t o  b e  used on 

both t h e  booster and t h e  o r b i t e r  a f t e r  atmospheric r een t ry  during 

f l i g h t  re turn ing  t o  ear th .  New demands must be  m e t  because these  

engines w i l l  have t o  be s t a r t e d  r e l i a b l y  while  i n  f l i g h t  and a f t e r  

perhaps weeks of exposure t o  t h e  vacuum and low temperature 

condi t ions of t h e  space environmento No j e t  engine has ye t  been 

outs ide  t h e  atmosphere of t h e  ear th .  

PROPULSION SYSTFNS CHARACTERIZED 

Charac t e r i s t i c s  of t he  t h r e e  propulsion systems are indica ted  i n  

f i g u r e  2. 

i n  t h e  main and a u x i l i a r y  propulsion systemss 

t h r u s t  fo r  t h e  o r b i t e r  must be about a mi l l i on  pounds; and s ince  two or 

t h r e e  engines w i l l  be  used, each w i l l  be of 400 or 500 thousand pounds 

th rus t .  Assuming t h e  same bas i c  engine and allowing fo r  exhaust expansion 

d i f fe rences ,  then t h e  booster w i l l  r equ i r e  1 2  or  13 engines. 

Liquid oxygen and l i qu id  hydrogen w i l l  be used a s  t h e  propel lan ts  

The t o t a l  main propuls ive 
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The notable  th ings  about t he  a u x i l i a r y  propulsion system a r e  the 

l a r g e  number of engines required,  possibly a s  many as 60 f o r  a t t i t u d e  

cont ro l  of t h e  s h u t t l e ,  and t h e  magnitude of t h e  force  t o  be provided 

by each, 

15,000 pounds t h r u s t  can be considered f o r  t h e  o r b i t a l  maneuvering func t ion  

of t h e  a u x i l i a r y  propulsion system, 

Although not  ind ica ted  i n  t h e  f igu re ,  t h e  RLlO engine de l ive r ing  

Rela t ive  t o  a f rbrea th ing  propulsion, the s i g n i f i c a n t  f a c t o r  evident 

i n  f i g u r e  2 i s  t h a t  considerat ion i s  being given t o  t h e  use of hydrogen 

a s  t h e  fue l .  

WHAT'S THE DIFFERENCE? 

How w i l l  t he se  systems d i f f e r  from previous ones? Obviously they 

w i l l  have t o  be  reusable ,  and not expendable, t o  make t h e  required 100 

f l i g h t s ,  And they w i l l  have t o  have long l i f e  with a p red ic t ab le  - l i f e  

expectancy. And very high r e l i a b i l i t y ,  e.g,, f a i l u r e  paths  of f a i l  

ope ra t iona l - f a i l  ope ra t iona l - f a i l  safe .  And repeated leak f r e e  funct ioning 

by valves  and s e a l s ,  

t h e  most complex, sophis t ica ted  set of i n t e r r e l a t i o n s  and i n t e r a c t i o n s  

y e t  devised, But t h e  r e a l  d i f f e rence  i s  t h a t  most every system, subsystem, 

and component i s  being pushed c lose  t o  t h e  l i m i t s  of e x i s t i n g  technology - 
and a l l  a t  t h e  same t i m e :  I n  some ins tances  ex t rapola t ions  are being made 

beyond es tab l i shed  technology; i n  o thers  t h e  customary ea r ly  margins i n  

performance expectat ions are being omitted 

And except ional  cont ro ls  and checkout systems. And 

Typical of previous rocket  systems, i s  t h e  Centaur vehicle .  When t h e  

Centaur development was assigned t o  LeRC i n  1963, a s t age  gross  launch weight 

of 37,000 pounds w a s  contemplated along wi th  an engine s p e c i f i c  impulse of 
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430 seconds; this would inject a payload of 2100 pounds into lunar trans- 

fer. As progress will have it, gross weight and payload weight went in 

diverging directions, but design margins were found and performance im- 

provements were squeezed out. 

and now a 39,000 pound Centaur can inject 2500 pound payloads into lunar 

t r a n s f e r  . 

Specific impulse was improved to 442 seconds 

Don't count on t h e  s h u t t l e  t o  be  s o  forgiving.  Both design margins 

and p o t e n t i a l  performance growth are absent ,  But not t h e  schedule! And 

so  t h e  p robab i l i t y  of missed t a r g e t s  and expensive f i x e s  i s  higher than 

ever before,  That ' s  what t h e  d i f f e rence  is. 

MAIN PROPULSION 

An ea r ly  photograph (Fig. 3)  gives  a comparison of a mock-up of t h e  

s h u t t l e  engine t o  t h e  5-2 and F-1 engines, 

t h a t  t h e  s h u t t l e  o r b i t e r  engine would be near ly  as long as t h e  F-1 engine; 

now t h e  o r b i t e r  engine w i l l  be  longer because a l a rge r  nozzle i s  needed 

f o r  higher performance e 

A t  t h e  t i m e ,  it w a s  thought 

I n  t h e  main propulsion systems using t h e s e  new engines, high 

performance i s  being pushed t o  t h e  l i m i t ,  

i s  intended t o  be 97 percento  This  i s  now approached by t h e  5-2 and RLlO 

engines,  but  only a f t e r  years  of developmental refinement,  

sa id  t h a t  one second of s p e c i f i c  impulse i s  worth 1500 pounds of s h u t t l e  

payload; or f o r  a given payload i t  i s  worth $25M i n  t h e  cos t  of each f l i g h t ,  

Spec i f i c  impulse e f f i c i ency  

It has been 

Theore t ica l ly ,  s p e c i f i c  impulse increases  with increas ing  pressure  

r a t i o  of t he  exhaust gases expanding through t h e  nozzle,  

very high s p e c i f i c  impulse r equ i r e s  t h e  use  of high energy propel lan ts  a t  

Thus, t o  g e t  
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high pressure  r a t i o ,  

have a l o w  pressure  a t  t h e  nozzle e x i t  ( low back pressure) ,  o r  have a 

high pressure  a t  t h e  nozzle entrance (high combustion pressure) ,  

There ere two ways t o  ge t  a high pressure  r a t i o :  

Since an  i n f i n i t e  pressure r a t i o  can be had by burning a t  j u s t  any 

combustion pressure  and exhausting t o  t h e  vacuum of space, t h e  only 

requirement f o r  t h e  o r b i t e r  engine i s  a l a r g e  nozzle of high area r a t i o .  

Therefore, t h e  o r b i t e r  engines do not  need high combustion pressure.  

For t h e  booster engines, which must exhaust i n t o  t h e  ea r th ' s  

atmospheric pressure,  a l a r g e  nozzle area r a t i o  i s  not he lpfu l  unless  

high combustion pressure  i s  ava i l ab le  a t  t h e  nozzle entrance. 

t h e  hardware and t h e  technology f o r  high combustion pressures  l i m i t  t h e  

pressure  r a t i o  ava i lab le .  Consequently, l a rge  nozzles are not  needed fo r  

booster engines. 

Therefore,  

NASA has ground ru led  t h a t  t h e  o r b i t e r  and booster engines have as 

much i n  common a s  poss ib le ,  i,e,, they should preferably be t h e  same engine. 

To achieve t h e  utmost performance, t h i s  compromise engine would be designed 

t o  burn high energy propel lan ts  a t  high combustion pressures  using a nozzle  

of high area r a t i o ,  Figure 4 gives comparative da ta  fo r  a preliminary 

design of t h e  engine i n  i t s  two configurat ions f o r  t h e  o r b i t e r  and t h e  

booster ,  For p r a c t i c a l  reasons t h e r e  w i l l  be a common power head comprising 

everything except most of t h e  nozzle  divergent sect ion;  then t h e  o r b i t e r  

nozzle w i l l  have a l a rge  r e t r a c t a b l e  divergent sec t ion  and t h e  booster 

engine w i l l  have a shor te r  f ixed sec t ion ,  Presumably t h e  nozzles can be 

factory-interchangeable;  they are r e l a t i v e l y  s t ra ightforward and easy t o  
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make, 

t he  booster ,  t o  be run e f f i c i e n t l y  a t  low pressure  f o r  t h e  o r b i t e r ;  it 

w i l l  b e  very d i f f i c u l t  and expensive t o  develop and produce. 

There i s  no way f o r  t h e  high pressure  power head, required f o r  

The propel lan t  flow systems and combustion zones are shown i n  

f i g u r e  5 f o r  a r ep resen ta t ive  vers ion  of t h e  power head, 

turbopump i s  dr iven by gases created i n  a preburner. These hot  gases then 

Each propel lan t  

en te r  t h e  main combustion chamber and burn f u r t h e r ,  wi th  a d d i t i o n a l  p rope l l an t ,  

at  a combustion pressure  near 3000 psia .  

t h a t  of any e x i s t i n g  rocket  engine, and t h e  preburner pressure  i s  about 

double t h a t  of t h e  main burner. This  necess i t a t e s ,  of course,  even higher  

pump and f l u i d  system pressures ,  hence most a l l  t h e  hardware, valves ,  s e a l s ,  

plumbing, pumps, etc. must conta in  and con t ro l  e i t h e r  high temperature 

gases a t  high pressure ,  or  cryogenic l i q u i d s  a t  pressures  approaching 

7000 ps i a ,  o r  both. 

This  pressure  i t s e l f  f a r  exceeds 

The most s i g n i f i c a n t  systems of t he  power head are t h e  combusters 

(preburner and main chamber) and t h e  turbopumps. 

which follow se rve  t o  i l l umina te  t h e  na tu re  of some areas of technology 

concerning t h e s e  systems, 

The several i l l u s t r a t i o n s  

Over t h e  pas t  twenty years  much has been learned a n a l y t i c a l l y  and 

experimentally t o  improve t h e  designing of t h r u s t  chambers and t h e  p red ic t ion  

of performance, s t a b i l i t y ,  and du rab i l i t y .  However, most of t h i s  work 

involved only l iqu id- l iqu id  propel lan t  i n j e c t i o n ,  combustion a t  only moderate 

pressures ,  and simple t h r u s t  chamber configurat ions.  I n  t h e  design of t h e  

s h u t t l e  engine t h e s e  d i s t i n c t i o n s  should be c l e a r l y  recognized. 
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High pressure  combustion w i l l  impose severe cool ing requirements 

f o r  t h e  combustion chambers; t h e r e  i s  much d iscuss ion  now over t h e  r e l a t i v e  

m e r i t s  and lo s ses  of t r a n s p i r a t i o n  and regenera t ive  cooling, 

Highly e f f i c i e n t  high pressure  combustion i s  very l i k e l y  t o  lead t o  

combustion i n s t a b i l i t i e s ,  severe  o r  otherwise, even though w e l l  considered 

design provis ions are made f o r  p ro tec t ion  aga ins t  them. 

rocket  engine y e t  developed has been immune t o  combustion i n s t a b i l i t i e s ,  

and t h e s e  have been simple engines compared t o  t h a t  contemplated f o r  t h e  

s h u t t l e .  The s h u t t l e  engine with i t s  i n t e r a c t i o n  between combustion 

chamber, preburner,  t u rb ine  d r ive ,  pump, boost pump, and propel lan t  flaw 

loops, w i l l  f o s t e r  dynamics (including i n s t a b i l i t i e s )  of a complexity 

which has been unknown before. 

Probably no 

I n  t h i s  most sophis t ica ted  of rocket engines, t h e r e  must be four 

turbopumps ins tead  of t h e  usual  two, i.e., t h e r e  w i l l  be  a boost pump 

f o r  each main pump so  t h a t  t h e  required p res su re  r ise can be a t t a ined  

e f f i c i e n t l y .  

t h e  necessary hydrodynamics can b e  accomplished wi th in  c a v i t a t i o n  l i m i t s ;  

but  extreme problems w i l l  be encountered i n  t h e  r o t a t i n g  seals which must 

s epa ra t e  tu rb ine  d r i v e  gases from cryogenic propel lan ts  having widely 

d i f f e r e n t  pressures  and temperatures e 

By thus  using pumps i n  tandem and by s tag ing  wi th in  pumps, 

Consider, f o r  example, condi t ions i n  t h e  main hydrogen pump. Turbine 

d r i v e  gases a r r i v e  a t  one end from t h e  preburner a t  more than 150OOF and 

5000 ps i a ;  a t  t h e  o ther  end l i qu id  hydrogen e n t e r s  t h e  pump a t  less than 

-4OOOF and about 300 ps i a ,  The r o t a t i n g  seals of t h i s  pump (Fig. 6 )  a r e  



8 

located along the s h a f t  from t h e  ho t ,  high pressure  tu rb ine  through t h e  

t h r e e  s tages  of t h e  pump t o  t h e  coId, low pressure end, The seals must 

work under these  very severe condi t ions a t  very high r o t a t i o n a l  speeds 

f o r  many se rv ice  cycles.  

Bearings fo r  t h i s  turbopump are placed outboard t o  a l l e v i a t e  torque 

loads. This permits t h e  use  of smaller bearings,  which i s  advantageous 

a t  the very high s h a f t  speeds employed. The bearing DN numbers w i l l  be 

near 2 mil l ion ,  a t  which some experience has been gained; but more 

experience i s  needed on extending t h e  l i f e  of bearings used a t  these  

values . 
These have been bu t  examples of s h u t t l e  main propulsion problems. 

Such problems are formidable, but surmountable., They represent  very real 

challenges. They w i l l  r equ i r e  much engineering. I f  quick f i x e s  must be 

found under t h e  duress of a t i g h t l y  scheduled development, they w i l l  be 

very expensive. 

AUXILIARY PROPULSION 

Similar  problems e x i s t  fo r  t h e  aux i l i a ry  propulsion systems. Both 

t h e  booster  and t h e  o r b i t e r  need a t t i t u d e  con t ro l  devices whi le  i n  space 

f l i g h t ,  Additionally,  t h e  o r b i t e r  w i l l  need o r b i t a l  maneuvering capab i l i t y ,  

Propulsive systems t o  m e e t  t hese  needs are present ly  not w e l l  defined, 

but obviously w i l l  be  most complex. 

and gaseous oxygen, but t h e  pressure  l e v e l  has not been se lec ted  y e t ,  Pumps 

may or may not be needed, Heat exchangers d e f i n i t e l y  w i l l  be  needed because 

t h e  propel lan ts  must be conditioned t o  allow fo r  gas-gas de l ivery  t o  t h e  

th rus t e r s .  Perhaps compressors could be used t o  d r ive  t h e  gaseous propel lan ts ,  

The t h r u s t e r s  w i l l  burn gaseous hydrogen 
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Figure 7 presents  schematics of only two of many candidate  a u x i l i a r y  

propulsion flow systems; one pumps l i qu id  propel lan ts  before  they are 

conditioned, t h e  o ther  compresses gaseous propel lan ts  a f t e r  conditioning. 

Separate  systems such as t hese  w i l l  be needed fo r  each propel lan t  

f o r  each t h r u s t e r ,  A t t i t ude  cont ro l  func t ions  w i l l  r equ i r e  placement of 

t h r u s t e r s  a t  a v a r i e t y  of l oca t ions  i n  t h e  vehic le ;  and f a i l u r e  mode 

requirements w i l l  demand redundancy. Valves, l a r g e  enough t o  handle gas,  

must be  a t  each t h r u s t e r ,  and must have f a s t  response and p o s i t i v e  leak-free 

sea l ing  f o r  what may add  up t o  a mi l l i on  cycles  each i n  operation. It i s  

evident ,  then, t h a t  t h e  system f o r  s to r ing ,  condi t ioning,  and de l iver ing  

propel lan ts  t o  two o r  t h r e e  dozen var ious ly  located t h r u s t e r s  on demand 

w i l l  have complications. 

Within t h e  t h r u s t e r s ,  new combustion, cool ing,  and i g n i t i o n  processes 

must be understood and applied.  

f o r  e f f e c t i v e  burning i s  q u i t e  d i f f e r e n t  from use  of l iqu id- l iqu id  or 

l iquid-gas streams conventionally employed; and adequate cooling of t h r u s t  

chamber wa l l s  without use of l i q u i d s  w i l l  r e q u i r e  considerable  ingenuity,  

Mixing of gas-gas streams of propel lan ts  

Xgnition of propellant gas mixtures, which will vary in temperature 

to as low as -3OOO F, must be performed in a reliable, repeatab+ manner 

for a large number of cycles. The use of spark plugs is one approach, 

but problems in tip erosion, power supply, power distribution, and elec- 

tromagnetic interference must be investigated and solved. Use of 

catalytic ignition presents an interesting alternative approach. 
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C a t a l y t i c  i g n i t i o n  has been under technology development fo r  s eve ra l  

years  as a poss ib l e  improvement over t h e  u s e  of spark plugs. 

i s  a schematic of one design of a c a t a l y t i c  i g n i t e r .  

provides a homogeneous mixture f o r  t h e  c a t a l y s t  bed, avoiding high O/F 

s t r i a t i o n s  which are detr imental  t o  t h e  bed. The o r i f i c e  and reduced 

area flow tube  provide a ve loc i ty  i n  t h e  mixed gas above t h e  flame 

ve loc i ty .  T h i s  avoids  flashback. Addit ional ly ,  t h e  d i f fus ion  bed 

provides a quenching e f f e c t  t o  prevent flashback. It a l s o  performs a 

secondary mixing function. This  i g n i t e r  can be  very small - not much 

l a r g e r  than a spark plug. 

Figure 8 

The mixing sec t ion  

Problems i n  t h e  pas t  have been encountered with c a t a l y t i c  i g n i t i o n  

when using cold propel lan ts .  

However, i n su la t ing  t h e  i g n i t e r  and adding small amounts of e l e c t r i c a l  

I g n i t i o n  delay sometimes can be very long. 

hea t  appears t o  o f f e r  a reasonable  solut ion.  

Auxiliary propulsion systems must undergo immediate design 

c l a r i f i c a t i o n  and development i f  a s h u t t l e  veh ic l e  i s  t o  become opera t ive  

i n  t h i s  decade, Both booster and o r b i t e r  w i l l  need them, 

f o r  t h e  o r b i t e r  w i l l  be  t h e  more s t r ingen t ,  

Requirements 

AIRBREATHING PROPULSION 

The j e t  engines f o r  flyback through t h e  atmosphere present  a s t range  

paradox, They may be prepared t o  burn hydrogen, ins tead  of j e t  f u e l ,  i n  

e i t h e r  t h e  o r b i t e r  or  t h e  booster ,  or  both,  Or they may be  eliminated 

a l toge ther .  

done wi th  t h e  veh ic l e  used as a l i f t i n g  body more e a s i l y  and as p rec i se ly  

Some competent people argue t h a t  f lyback and landing can be 
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as can be done wi th  powered approach. This  i s  e spec ia l ly  t r u e  with t h e  

o r b i t e r  whose r een t ry  can be  wel l  programmed f o r  proximity t o  t h e  landing 

s i te ,  Cer ta in ly  t h e  o r b i t e r  can p r o f i t  by freedom from carrying any 

hardware up and back down j u s t  t o  u se  on t h e  r e tu rn ;  t h i s  hardware and 

i t s  propel lan t  weight can be  traded d i r e c t l y  pound f o r  pound with payload. 

Consideration of t h e  mission as present ly  conceived, however, p resents  

The advantages of using hydrogen engine c h a r a c t e r i s t i c s  given i n  f i g u r e  9. 

as f u e l  are shown by f i g u r e  10, where i t  may be seen t h a t  hydrogen b e n e f i t s  

t he  booster considerably by increasing s h u t t l e  payload capaci ty ,  and a l s o  

improves the  u t i l i t y  of t h e  o r b i t e r .  Reduction of engine weight r e l a t i v e  

t o  t h r u s t  i s  more s i g n i f i c a n t  t o  t h e  o r b i t e r .  

Problems i n  t h e  use  of hydrogen center  i n  t h e  design of t h e  fue l  

flow system, pumps, and cont ro ls  as required t o  a f ford  adequate t h r o t t l i n g  

with a cryogen. Further  concern involves  t h e  exposure of j e t  engine 

ma te r i a l s ,  moving p a r t s ,  and lub r i can t s  t o  t h e  space environment p r i o r  

t o  use. No d i f f i c u l t y  i s  expected with t h e  combustion performance, based 

on experiments on engines i n  test c e l l s  and i n  a i r c r a f t  (Fig. 11) run with 

hydrogen about 15 years  ago. 

CONCLUSIONS 

The space s h u t t l e  propulsion systems a l l  r equ i r e  new waves of 

development. This  development w i l l  s t e m  from a l a r g e  background of 

experience; but  i t  w i l l  push t o  t h e  very f r inges  of technology, or  beyond, 

i n  an exceedingly complex endeavor. No one imposs ib i l i ty  or  improbabi l i ty  

i s  evident ,  but  with a m u l t i p l i c i t y  of problems t h e  whole may exceed t h e  

sum of i t s  pa r t s .  
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The usua l  design and performance margins are not  being provided 

i n  s h u t t l e  propulsion systems, and t h i s  i s  t y p i c a l  of t he  whole s h u t t l e  

approach . 
lead t o  another - t h e  domino e f f e c t .  

With everything being developed a t  once, one f a i l u r e  could 

Sophis t icated simultaneous development with lack  of margins r equ i r e s  

t h a t  every c r i t e r i o n  of t h e  design be m e t  abso lu te ly ,  This w e  can do, but 

i t  w i l l  r equ i r e  s k i l l f u l  and resourcefu l  engineering. 
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